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Solitary internal waves in deep water 
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A new type of solitary wave motion in incompressible fluids of non-uniform 
density has been investigated experimentally and theoretically. If a fluid is 
stratified in such a manner that there are two layers of different density joined 
by a thin region in which the density varies continuously, this type of wave 
propagates along the density gradient region without change of shape. In  contrast 
to previously known solitary waves, these disturbances can exist even if the fluid 
depth is infinite. The waves are described by an approximate solution of the 
inviscid equations of motion. The analysis, which is based on the assumption that 
the wavelength of the disturbance is large compared with the thickness, L, of the 
region in which the density is not constant, indicates that the propagation 
velocity, U ,  is characterized by the dimensionless group (gLlU2) In (pl /p2),  where 
g is the gravitational acceleration and p is the density. The value of this group, 
which is dependent on the wave amplitude and the form of the density gradient, 
is of the order one. Experimentally determined propagation velocities and wave 
shapes serve to verify the theoretical model. 

1. Introduction 
Stably stratified fluids, when in motion, give rise to many fascinating pheno- 

mena which owe their existence to the interaction between density variations and 
gravity. One of the best known of these is the internal wave, presumably so 
named because, in contrast to more commonly encountered waves, it is formed 
deep within stratified fluids rather than on their surface. Although, admittedly, 
their effects may have been exaggerated a t  times-Pettersson (1912), for example, 
has suggested that such a seemingly non-maritime occurrence as the fall of the 
Roman empire may have been influenced by variations in internal tides-their 
importance in various geophysical problems cannot be discounted. For instance, 
naturally occurring internal waves may play a significant role in transport pro- 
cesses within oceans and estuaries, either directly by convection or indirectly by 
the generation of turbulence. 

For the purposes of analysis, internal waves have been divided into two types: 
small-amplitude periodic waves and shallow water waves. In  the former case (see 
Yih 1960a) the equations of motion are linearized by assuming that the wave 
amplitude is small compared to the wavelength, and the subsequent development 
yields an infinite number of modes of travelling periodic waves. On the other 

t Present address: Institute of Geophysics and Planetary Physics, University of 
California, La Jolla. 
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hand, the analysis of shallow water internal waves, which has been discussed in de- 
tail by Benjamin (1966), is based on the simplifying assumption that the horizonal 
length scale of the motion is long compared with the fluid depth, and yields, in 
addition to periodic waves, an infinite number of travelling solitary wave modes. 

The purpose of this paper is to present the results of a theoretical and experi- 
mental investigation of a new type of solitary internal wave which, in contrast to 
previously known solitary waves, can propagate in a fluid of infinite depth. To 
be more specific, it  will be shown that in a stably stratified fluid consisting of two 
deep layers with constant densities p1 and p2 that are separated by a thin layer 
in which the density varies continuously, solitary waves can propagate down 
this thin layer with a characteristic wavelength much greater than the thickness 
of the region in which the density varies.t Thus, such waves are ‘long waves’ 
relative not to the depth of the fluid but rather to L, the thickness of the region 
of varying density. 

In  what follows we shall employ an inviscid analysis together with the 
Boussinesq approximation, thusreducing the basic equations to a relatively simple 
form for which approximate analytic solutions as well as a series of numerical 
solutions will be obtained. Although in principle an infinite number of modes 
of motion can exist, experimentally only the lowest of these has been observed 
and hence results will be presented only for that mode. These will indicate that 
the speed of propagation of the wave, U, is characterized by the dimensionless 
group (gL/ U2) In (p1/p2), the value of which is dependent only on the form of the 
density gradient and the dimensionless amplitude of the wave. Wave propaga- 
tion velocities are easily determined experimentally and, as will be shown, 
compare quite favourably with those predicted theoretically. 

2. Analytic solutions 
Although, physically, we consider here the unsteady flow associated with a 

wave propagating horizontally at constant velocity, - U, through a fluid which 
is quiescent at infinity, we can reduce the problem to  one of steady motion by 
employing a co-ordinate system that moves with the wave. This allows us to use 
Long’s (1953) integrated equation of motion for an incompressible, inviscid and 
non-diffusive fluid of variable density, which, in terms of dimensionless 
variables. is 

where yk is the dimensionless streamfunction and H($) is an arbitrary function 
of $. Here g denotes the gravitational constant, L is a characteristic length 
denoting the thickness of the non-uniform density layer and y is directed 
upwards. For the special case of uniform streaming at infinity H i s  simply 

t After completing this paper our attention was drawn to an independent and very 
detailed analytic study of this problem by T. Brooke Benjamin (1967), who showed that 
this type of wave can occur in various other stratified fluid configurations. 
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and the equation of motion becomes 

The subsequent development is based on the assumption that an approximate 
solution for weakly stratified fluids can be obtained by neglecting the right-hand 
side of this equation. Thus the basic equation becomes 

V2$+h$F($+y) = 0; q5 -+ 0 as x2+y2 + 00, (1) 
where $ = 9-y ,  dlnp/d$ has been denoted as (dlnp/d@)maxF($) with E” 2 0, 
and h = - (gL/U2) (dlnp/d$)max. 

At this point, before proceeding with the discussion of deep water solitary 
internal waves, it  is worth while to consider briefly their shallow water counter- 
parts, i.e. to seek a solution of equation (1) which vanishes at y = f 1 and as 
x + IC_ co. This can best be accomplished by using the shallow water approxima- 
tion in which the x-derivative of $ is assumed to be O(E)  smaller than the 
y-derivative, with E 4 1. Consequently, (1) is written in terms of the stretched 
variable 2 = ex, q5 and h are expanded in appropriate powers of 8 as shown 
below : 

while F($ + y) is expanded into 

$ = e2$(l) + E ~ $ ( ~ )  + . . . , and h = h(O) + + . . . , 

E”($+Y) = F(Y)+F’(Y)q5+. . . ,  
which is certainly permissible in view of the assumption that $ < 1. In place of (1) 
we then obtain 

e“4 (1) uu + A ( o ) F ( ~ )  p i  + e4[4gj + A ( o ) F ( ~ )  p )  + a w ( y )  

+ h(O)F’(y) (q5(1))2 + $$!!I + O(66) = 0, (2) 
the O($) term of which is satisfied by setting = f(a)p(y), where 

p”+h(O)F(y)p = 0; p (  k 1) = 0 

and f (2) is arbitrary. We wish to note here, in connexion with the deep water 
solitary wave solutions to be developed shortly, that, of the infinite number of 
eigenfunctions of this Sturm-Liouville system, the function p(y) corresponding 
to the lowest mode has no zero in the interval - 1 < y < 1. 

known, the 0(e4) terms of (2) now yield a linear inhomogeneous 
equation for $@) which has a solution only for particular forms of f (2) .  To show 
this we express the solution of the O(e4) terms of (2) as 

With 

$(2) = ~ ‘ l ’ f ( W l ( Y )  +f2(@h2(Y) +f”(2)h3(Y), 

where h,, h, and h3 axe solutions of the inhomogeneous equations 

h; + h(O)Fh, = - Fp, Id; + h(O)Fh, = - F‘P’, h: + h(O’Fh3 = -p ,  

satisfying the boundary conditions h, = h2 = h3 = 0 at y = - 1. The second 
boundary condition, that $(2) = 0 at y = 1, requires then that 

38-2 
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which has the solution, corresponding to a solitary wave, 

Long (1965) has pointed out that this analysis, which is based on an equation of 
motion that has been simplified according to  the Boussinesq approximation, can 
lead to erroneous results if F(+) is small; nevertheless, i t  suffices to demonstrate 
the principal features of shallow water solitary internal waves. 

We now turn our attention to fluids of infinite depth. To simplify the analysis 
we shall consider only two particular forms of the function F(+) which, however, 
are representative of density configurations generally encountered in practice. 
In the first case, we shall set F equal to unity for - 1 < $ < 1 and equal to zero 
everywhere else, thus dividing up the fluid into three layers in which the equation 
of motion will be linear with, however, non-linear boundary conditions at the 
dividing streamlines. For our second problem we shall set F(+) = sech2+, and 
then attack equation (1) by the method of inner and outer expansions; this 
method could, of course, be applied equally well for any acceptable form of P, but 
the function sech2+ seems to be physically attainable as well as an adequate 
approximation of a class of density gradients that often occur naturally. 

Let us consider the three-layer solution for which F = 1 for - 1 < + < 1 and 
F = 0 elsewhere. In the various layers (1)  becomes 

V2$, = 0 for $ 2 1, 

V2$2+h$2 = 0 for - 1 < + < 1, 

V2$,= 0 for $ < -1 .  

At the dividing streamlines, + = t- 1, well-known kinematic and dynamic condi- 
tions require that @ and the pressure be continuous, which, as shown by Yih 
(1960b), also implies continuity of velocity in cases where the density is con- 
tinuous. Hence, letting Yl and Y3 be respectively the y co-ordinates of + = 1 and 
y? = - 1, we obtain the appropriate boundary conditions 

$1 = $42, a$41/ay = a$42/ay at y = Yl = 1 - $4&, Yl), 

$3 = $2, a$,/?!/ = a$,/@ at Y = y3 = - 1 - $43(X, Y3). 

As was the case in the analysis of shallow water waves, we assume now that the 
waves we are describing are ‘long’ and introduce the stretched co-ordinate 
2 = ex with t: < 1. Also, in order to prevent the equations in layers 1 and 3 from 
degenerating completely, we stretch the y co-ordinates in layers 1 and 3 by means 
of j) = E(Y - 1) and 9 = ~ ( y  + 1). And, finally, we expand the principal dependent 
variables in the small parameter E in the usual fashion: 

(i5 = €$(I) + E 2 p  + . . . , h = + sh(1) + . . . , 
which, in contrast to the expansion used for shallow water waves, assumes that 
the horizontal length scale is inversely proportional to the first power of the wave 
amplitude. Consequently, the equation of motion in layer 2 becomes 
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while the equations in the other two layers remain unchanged. In  addition, by 
expanding $ in a Taylor series about y = 1 and y = - 1, we obtain 

= 1 - E$&1)(2, 1) + 0 ( € 2 ) ,  IT3 = - 1 - €+p(2, - 1) + 0 ( € 2 ) ,  

E + y ) p ,  0) + E 2 + ~ 1 2 ) ( 2 ,  0)  + 0 ( € 3 )  

which, in turn, lead to the linearized boundary conditions at y = 1 

and 

( 5 )  

From inspection of the O ( E )  terms of (3) and ( 5 )  we can readily see then that 
together with a similar set resulting from the expansion about y = - 1. 

they admit the solutions 

However, as mentioned earlier, only the lowest mode, 

&) = f (2)  sin i n y ,  h(0) = 4 ?  

will be considered here since it is the only one that has been observed experi- 
mentally. Also, since, in this case, $ is odd about y = 0 it suffices to consider the 
problem only in the upper half-plane. 

On the other hand, inside the constant density layer, 

V2411) = 0; $il) =f(2) at jj = 0, (6) 

where the boundary condition at @ = 0 follows directly from the O(s) terms of (4). 
Returning now to the variable density layer, we see by inspection of the 

O(e2) terms of (3) that 

$p) = (h(l)/?r)f(2) y cos (Bny), 

where only the particular solution has been retained since addition of a multiple 
of the homogeneous solution, $A1), would simply be equivalent to a redefinition of 
the arbitrary constant e. As a result, the O(@) terms of ( 5 )  reduce to 

which constitutes a second boundary condition on the function $il) of equation (6). 
33efore proceeding with the solution of (6) and ( 7 )  let us consider the case where 

P = sech2 $. As in the three-layer solution, we let 2 = E X  and expand q5 and h in 
powers of E .  Also, by virtue of the smoothness of the density gradient, we expand 
P($) in a Taylor series about $ = y, 

P($) = sech2 y - 26 sech2 y tanh yqW(2, y) + O(e2), 
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in place of (1) .  
It is immediately apparent now from the O(B) terms of this equation that there 

is no solution for +(I) which vanishes as y approaches infinity, implying a break- 
down of the approximation scheme adopted here, due to the fact that, as y+ 00, 

agYl)/ay does not remain large compared with E aqW/a2. Hence the problem cannot 
be treated by a regular perturbation and must be approached instead via the 
method of inner and outer expansions. We consider, therefore, the domain of 
validity of (8) to be an ‘inner’ region and introduce an ‘outer’ region in which 
the appropriate co-ordinates are (2,g) = (ex,ey) and q!~ is denoted by 6. On 
substituting this into (1) and noting the behaviour of sech2@/e) as e+0, we 
obtain then the equation of motion in the outer region 

ev2$(1)+E2v2$(2)+ o(2) = 0, 

together with the appropriate matching condition between the inner region and 
the outer region 

Again, only the upper half-plane will be considered, since, as in the case of the 
three-layer solution, q5 is odd about y = 0. Also, owing to the analytic nature of$ 
in the outer region, we may expand $(2, Q) in a Taylor series about 9 = 0 yielding, 
for the matching requirement, 

Now, the lowest mode solution of the O(E) part of (8) which remains finite as 
y-+oois 

which matches, to O(e), with 

#(I) = f ( 2 )  tanh y, Ato) = 2, 

specified by 

~ 2 $ ( 1 )  = 0; $(I) = f(2) at 9 = 0. (9) 

Similarly, the non-homogeneous solution of the O(e2) part of (8) becomes 

@) = -iA(l)f(&)In(coshy) tanhy+f2(2) [Qln(coshy) tanh y-Qtanh3y1, 

which has the limiting form, as y -+ co, 

This, when inserted in the matching condition, yields for the ‘outer’ function +@) 

$2) = +A(l)In 2f(2) - (8 In 2 + $)f(2) ~ 2 @ 2 )  = 0; at ij = 0, 
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as well as the following relation, which, along with equation (9), determinesf(0) 
and A(1), 

Although, of course, a direct comparison between the ‘layers’ in the three- 
layer solution and the ‘regions’ in the inner and outer expansion method cannot 
be taken too literally, the similarity of the two solutions is marked. For one thing, 
the eigenfunctions have similar forms, each having a single zero, in contrast to 
the lowest solitary water internal wave mode, which, excluding the boundaries, 
has no zero. Furthermore, we find that in each case the unknown functionf(B), 
with If(O)\ = 1, and the first correction to h must satisfy the system 

V2$ = 0 ;  $ = f(&), a$/afj = - Ah(l’f(0) + Bf2(&) at g = 0, 

where, for the three-layer method, A = $ and B = $rr2 (see equations (6) and (7)), 
while for the inner and outer solution A = Q and B = Q (see equations (9) and 
(lo)), which can be reduced to the single form 

h(1) 
Vz$= 0; $ =q(2) and $= qz-Inc“lq at y ” =  0 (11) 

by using the transformations 
B 

(2, y”) = A IW (07 a 6) = q=q (f, $1. 

The solution to ( 1  1) is now (Courant & Hilbert 1953) 

where, in view of the second boundary condition in ( l l ) ,  q must satisfy the 
non-linear integral equation 

Equation (13) was solved at first numerically by a finite-difference technique, 
but, as shown by Benjamin (1967), it admits the exact solution 

L 
q(S) = -__ with A(l) < 0, 

1+52 

which we subsequently found to be in excellent agreement with o w  numerical 
results. Hence, as shown also by Benjamin, the outer solution 6 becomes simply 

from which it is a simple matter to recover either $(I) of the three-layer solution 
or $J1) of the inner and outer expansion solution, and thus to complete the first 
term of the solution to equation (1). The result of perhaps the greatest interest is 
that A(l) = - iB/A, which allows us to compute directly the rate at which the wave 
propagation velocity increases with increasing wave amplitude. 



600 Russ E .  Davis and dndreas Acrivos 

3. Numerical solutions 
In order to extend the approximate analytic results of the previous section, 

which are valid only for small wave amplitudes, we present here the results of a 
study of the finite-difference equivalent of the equation of motion. It will be 
shown that, although this approach allows us to approximate the solution to (1) 
for arbitrarily large wave amplitudes, the equation itself becomes invalid for 
large waves whenever regions of closed streamhe flow occur. Nevertheless, there 
is a considerable range of amplitudes for which the analytic results presented 
earlier are not adequate while valid numerical solutions can be found. 

The introduction of the mesh dimensions S,, 8, and the indices i, .j defined by 
xi = (2i + 1) Sz, yj = 2jS, allows us now to obtain the finite-difference form of (I) ,  

Although, in principle, these could be solved for an arbitrary choice of P, the 
required computation time would be extremely large owing to the large dimen- 
sions of the flow field and the need for a mesh size small enough to resolve the 
details of the flow. However, if we restrict ourselves to the three-layer model, 
F = 1 for - 1 < c$$ + ZjS, < 1 and F = 0 otherwise, we can significantly reduce 
the computational difficulty by employing a rather novel technique based on the 
use of the finite difference equivalent of a Green’s function, GZ, defined by 

Clearly, the solution of this equation should approach a multiple of the funda- 
mental solution of Laplace’s equation, In ( r ) ,  as n and m tend to infinity provided 
that 8, and 8, are both small enough. Hence, it was decided to obtain G by solving 
this equation via a standard relaxation technique subject to the boundary condi- 
tion that as n and m become large 

G: = Cln ([nS,.2+ [mS,]2). 

The value of C was adjusted so that the strength of the ‘source’ at  m = n = 0 
was -1. 

Because the ‘function’ G behaves, in a sense, like the Green’s function for 
Poisson’s equation, it can be seen that (15) admits the solution 

but, since P = 0 throughout most of the field, this may be reduced to the smaller 
system of linear equations 

where J(%) is the largest j index for which 4; + 2 6 , ~  is less than unity. By intro- 
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ducing the symmetry properties $(x, - y) = - $(x, y) and $( - x, y) = #(x, y) this 
simplifies to 

[j  -j]2 + [i - i]2 [ j  -712 + [i + 'i + 112 + 

g + l n  (---.) [j +jI2 + [i - E l 2  (- [j +J]2+ [i + z + 1 1 2  ) 
as j / j +  co, we see that since 0 < J < J ,  the solution of equation (1 7) automatically 
vanishes as y2+ a. Hence we need require only that # + 0 as 'E -+ 00. 

The solution of (17) is, of course, complicated by the fact that the location of 
the points J ( z )  is not known in advance; but, since it is not difficult to estimate 
the shape of the dividing streamline $ = 1, we can proceed as follows: (i) we 
choose a reasonable shape for the dividing streamline $ = 1, thus locating 
approximately the points J(r);  (ii) we solve the algebraic system (17) for the 
various eigenvectors which, when multiplied by a suitable amplitude E ,  represent 
possible solutions for #; (iii) for each eigenvector, we attempt to find a value E 

such that c,h + 26,jis less than unity for everypointj < J(Z) and greater than unity 
for all other points. If this final step is completed successfully, we can conclude 
that the resulting # is a solution of (16) and hence of (15). 

When this computation scheme is applied with 8, = i, 6, = & or 8, = A, 
S, = & and the summation with respect to ;E is truncated after 15 or 20 terms, 
respectively, the size of the algebraic system to be solved ranges upwards, 
depending on the wave amplitude, from 31 equations for the first case or from 
81 equations for the other. Actually, since the lowest mode of motion, to which 
we are confining our interest, corresponds to the smallest eigenvalue of (17), we 
may dispense with the time-consuming task of finding a complete solution and 
use instead the iterative 'power method' (Lapidus 1962) which seeks only the 
first eigenvalue and the corresponding eigenvector. 

With experience it is possible to estimate the shape of the dividing streamline 
well enough so that a valid solution can be obtained from nearly half the initial 
guesses. In fact, having assumed the points J ( i )  and solved the linear equations, 
it is usually possible to find a range of amplitudes for which all the points with 
j < J ( i ) ,  but no others, are included between the dividing streamlines. This 
uncertainty in wave amplitude is depicted in figure 1, in which the values of h 
obtained using the two different mesh sizes and from the approximate three-layer 
solution are plotted against the dimensionless wave amplitude a, which, for the 
numerical solutions, is defined as the maximum value of (y- 1) along ?,h = 1. 
Figures 2 and 3 depict, respectively, the solution for a moderate amplitude and 
a large-amplitude wave. In plotting these solutions, the value of # was deter- 
mined at each station x = xi by linear interpolation in the vertical direction, and 
the points at  which $(xi, y) = constant were then joined by a smooth curve. 

It can be seen from the results for the large-amplitude wave that, near the 
centre of the disturbance, the streamline $ = 0 bifurcates, enclosing a region of 
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closed streamline flow. This was found to occur for wave amplitudes greater than 
about 1.2. Unfortunately the present method of analysis ceases to be valid in 
such regions where the streamlines do not extend to infinity, for, as may be 

0.5 
H 

- 

1 I I 1 
0 0.5 1.0 1.5 

a 

FIGURE 1. The parameter +(gL/U2) In (p , /p , )  from numerical solutions. 
-, coarse mesh; 1-1, h e  mesh. 

'1 

2 E -  t= 
$ = 1.0 

$= 1-8 
1.4 

I 

- 3  1 
FIGURE 2. Numerical solution for a = 0-8. 

recalled, in arriving at (l), the density p($) and the arbitrary function H($) were 
determined from the known nature of the flow as x+co.  Although it is true, of 
course, that one might be able to make a reasonable choice for p and H in the 
closed streamline region of the flow (for example the assumption of uniform 
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density might be considered acceptable), even so the existence of a closed region 
in the flow raises a serious question as to the validity of neglecting the effects of 
viscosity in the analysis. This is so, because, if there are no closed regions we 
would expect the motion of a fluid with a very small viscosity to differ from the 
solution of (1) by a small correction which would account for the ‘viscous 
difhsion’ of vorticity and the concomitant decrease, with time, of the amplitude . 

3 

2 

1 

Y O  

- 1  

- 2  

- 3  

FIQURE 3. Numerical solution for a. = 1.4. 

of the wave. On the other hand, as has been pointed out by Batchelor (1956), if 
there is a region of the flow in which the streamlines are closed, the diffusion of 
vorticity will have to play an important role in determining the nature of the 
flow. In  particular, since at steady state there is no convection across the 
boundary of the closed streamline region, the vorticity will have to diffuse 
throughout its core until it  reaches some constant value everywhere. Hence the 
vorticity in the core cannot be obtained as a state variable of $ and y ,  as in (l), 
but must be determined from knowledge of the flow along the boundary of the 
closed region, $ = 0. 

Owing to the difficulties just discussed, no valid analysis could be found 
for waves which include regions of closed streamline flow. Nevertheless, the 
numerical results obtained do present a significant extension of the approximate 
analytic solutions, particularly in that they indicate the trend of the group h as 
the wave amplitude becomes large but still less than about 1-2. The inability to 
describe waves with closed streamlines is, however, a serious limitation since, as 
discussed in the following section, waves in this regime can be produced and are, 
in fact, very effective in promoting mixing across the layer of varying density. 
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4. Experimental results 
The experiments were carried out in a Lucite tank 2.5 m long, 40 em deep and 

10 cm wide which was filled with an appropriatcly stratified solution of salt and 
water. The tank was initially half filled with a uniform solution of salt water with 
adensityranging from 1.17to 1.05 g/cm3. Fresh waterwasthen slowlyfloatedonto 
thesaltwater, thereby creating two layers of constant density joined by a layer of 
approximately 1 cm thickness in which the density varied continuously. As the 
experiments were carried out, the thickness of the gradient layer slowly increased 
because of diffusion and the mixing associated with the wave generation tech- 
nique, thus forming a range of density profiles. Drops of a mixture of toluene and 
carbon tetrachloride coloured with oil red dye, all of which are insoluble in water, 
were then injected into the upper layer and allowed to settle, thereby demarcating 
the levels at which they were neutrally buoyant and providing a method for 
visualizing the flow. The densities of both the salt solutions and the organic 
mixtures were measured to ? O-O02g/cm3 by means of a hydrometer. 

Perhaps the most remarkable feature of the type of solitary wave under study 
was the ease with which it could be generated. Almost any disturbance of the 
'density gradient layer would produce a wave of this type, mixed with other wave 
motions of a transient nature, which, however, could be eliminated by adopting 
the following technique. A small box was constructed with an open top and a 
horizontal slit in one side, and was fitted with a plunger with which fluid could be 
drawn into or ejected from the box through the slit. After the box had been placed 
at the end of the wave tank with the slit adjusted to the level of the density 
gradient layer, fluid was drawn into the box and impulsively ejected through the 
slit. The resulting motion near the slit was quite chaotic, resembling a pulse of 
turbulent wall jet, but, 20-30 cm farther downstream, the disturbance took the 
form of a, solitary wave and continued to propagate down the tank. Figures 
4 and 5 ,  plate 1, are photographs of two such solitary waves, both propagating 
from left to right between layers of density 1.00 and 1*14g/cm3, respectively. 

The smaller-amplitude wave in figure 4 is an example of the type of solitary 
wave modelled by the theoretical analysis of the previous sections. The wave- 
shape, which appears to be asymmetric only because the marker drops were not 
placed uniformly throughout the density gradient layer, underwent no change, 
other than a, gradual attenuation of amplitude, as the wave propagated down the 
tank. As would be expected of a wave motion, the fluid velocities associated with 
this disturbance were less than the propagation velocity. The motion was 
extremely two-dimensional with no noticeable velocity parallel to the wave front 
and without significant interaction with the walls of the wave tank. Waves of this 
type were found to reflect off the end of the tank without losing much of their 
energy and two waves travelling in opposite directions would pass through each 
other and travel on without further change of shape. 

In  contrast, the wave depicted in figure 5, although of only slightly greater 
amplitude than that shown in figure 4, had a character entirely different from 
that treated in the theoretical analysis. In  such waves the waveshape was not 
steady and semiperiodic waves were seen being shed behind the main disturb- 



Solitary internal waves in deep water 605 

ance. In  addition, the fluid velocity a t  the centre of the wave was found tjo be 
approximately equal to the propagation velocity, giving to the motion the appear- 
ance of a ‘lump’ of fluid moving through the region of varying density. In fact, 
regions of closed streamline flow, quite similar to those seen in the large-amplitude 
numerical solutions, were often observed. However, as viscous dissipation and 
the unsteady semiperiodic waves extract energy from the main motion, such 
lumps decayed to small-amplitude waves of the type pictured in figure 4. 

In  addition to such qualitative observations of the wave behaviour, the experi- 
mental programme included the measurement of wave propagation velocities. 
While neither of the idealized density profiles used for the analysis could be dupli- 
cated exactly, the actual density profile was found to be approximately of the 
form Inp = (dhpp/d@)-),,, tanhy/L+C which was used in developing the inner 
and outer solution. Therefore, in order to compare measured wave speeds to the 
predictions of our theoretical model, we chose to treat our data by assuming that 
the density variation was of this form. 

The constant (dlnp/d@),,, is given simply as i l n  (pl/p2), where p1 and p2 are, 
respectively, the densities of the upper and lower homogeneous layers. The 
characteristic length L was determined by measuring the elevation of various 
neutrally buoyant drops of known density and fitting the data to the assumed 
function, tanh(y/L), and the propagation velocity was found by timing the 
passage of a wave through a measured meter. It was then possible to compute the 
group A = - (gL/ U2)  (d lnp/d$)max which is the fundamental parameter of our 
analysis. 

From photographs similar to figures 4 and 5, which were taken as the wave 
passed through the measured meter, it is possible to determine the value of q5 
along those lines of constant density which are demarcated by neutrally buoyant 
drops. Unfortunately, the amplitude parameter E ,  used in the analysis, is defined 
only in terms of the expansion q5 = eqY1) + E ~ # ( ~ )  + . . . and hence cannot be deter- 
mined without knowledge of the complete analytic solution. We have chosen, 
therefore, to express our results in terms of the amplitude parameter a defined by 

where p1 and pz are the densities of the upper and lower layers, respectively, and 
q5ext is the extremum value of # along the line of constant densityp. This ampli- 
tude parameter is closely related to 6 ,  being, in fact, the value of e computed from 
the first-order analysis for which 

In  principle, since the dependence of q5ext and q5(l) on p are not exactly the same, 
we would expect the amplitude a to depend on p. But in practice it was found 
that a as computed from q5ext for different lines of constant density was essentially 
independent of p. 

The results of measurements of waves propagating between layers of fresh 
water and salt solutions having densities of 1.052, 1-095 and 1.16Sg/m3. are 
presented in figure 6, in which measured values of A are seen plotted against the 
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amplitude parameter a. The analysis predicts that as u becomes small h should 
equal 2.0-1.26 or, since a = 6 + O(e2), that h = 2.0 - 1.2a. The close agreement 
between the experimentally determined values of h and this expression serves 
as a remarkable corroboration of the linearized theory based on the long wave 

I I I I 

assumption. Comparing figure 6 to figure 1, in which the value of h obtained from 
the numerical solutions for a three-layer fluid are presented, we are also led to 
conclude that the deviation from the linear theory is a finite-amplitude effect 
which could be accounted for by considering terms of higher order in e.  It would 
appear, then, that neither the viscosity nor the finite depth of the water (in 
dimensionless distance always greater than 40) had a significant influence on the 
propagation velocity and that the idealized density profile assumed in the analysis 
was adequate to describe the configuration actually encountered. 

This work was supported in part by a grant from the Office of Saline Water and 
by a National Science Foundation fellowship to Russ E. Davis. 
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